Variable Mutation Rates as an Adaptive Strategy in Replicator Populations
نویسندگان
چکیده
For evolving populations of replicators, there is much evidence that the effect of mutations on fitness depends on the degree of adaptation to the selective pressures at play. In optimized populations, most mutations have deleterious effects, such that low mutation rates are favoured. In contrast to this, in populations thriving in changing environments a larger fraction of mutations have beneficial effects, providing the diversity necessary to adapt to new conditions. What is more, non-adapted populations occasionally benefit from an increase in the mutation rate. Therefore, there is no optimal universal value of the mutation rate and species attempt to adjust it to their momentary adaptive needs. In this work we have used stationary populations of RNA molecules evolving in silico to investigate the relationship between the degree of adaptation of an optimized population and the value of the mutation rate promoting maximal adaptation in a short time to a new selective pressure. Our results show that this value can significantly differ from the optimal value at mutation-selection equilibrium, being strongly influenced by the structure of the population when the adaptive process begins. In the short-term, highly optimized populations containing little variability respond better to environmental changes upon an increase of the mutation rate, whereas populations with a lower degree of optimization but higher variability benefit from reducing the mutation rate to adapt rapidly. These findings show a good agreement with the behaviour exhibited by actual organisms that replicate their genomes under broadly different mutation rates.
منابع مشابه
Evolutionary game dynamics in finite populations with strong selection and weak mutation.
We study stochastic game dynamics in finite populations. To this end we extend the classical Moran process to incorporate frequency-dependent selection and mutation. For 2 x 2 games, we give a complete analysis of the long-run behavior when mutation rates are small. For 3 x 3 coordination games, we provide a simple rule to determine which strategy will be selected in large populations. The expe...
متن کاملAirfoil Shape Optimization with Adaptive Mutation Genetic Algorithm
An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...
متن کاملOscillatory dynamics in evolutionary games are suppressed by heterogeneous adaptation rates of players.
Game dynamics in which three or more strategies are cyclically competitive, as represented by the rock-scissors-paper game, have attracted practical and theoretical interests. In evolutionary dynamics, cyclic competition results in oscillatory dynamics of densities of individual strategists. In finite-size populations, it is known that oscillations blow up until all but one strategies are eradi...
متن کاملSTRUCTURAL OPTIMIZATION USING A MUTATION-BASED GENETIC ALGORITHM
The present study is an attempt to propose a mutation-based real-coded genetic algorithm (MBRCGA) for sizing and layout optimization of planar and spatial truss structures. The Gaussian mutation operator is used to create the reproduction operators. An adaptive tournament selection mechanism in combination with adaptive Gaussian mutation operators are proposed to achieve an effective search in ...
متن کاملThe \sigma law of evolutionary dynamics in community-structured populations
Evolutionary game dynamics in finite populations provides a new framework to understand the selection of traits with frequency-dependent fitness. Recently, a simple but fundamental law of evolutionary dynamics, which we call σ law, describes how to determine the selection between two competing strategies: in most evolutionary processes with two strategies, A and B, strategy A is favored over B ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010